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Hardware Security Modules (HSMs)
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• Root of trust for various key management services (KMS)
• Their root keys should be stored in HSMs

• Secure physical separation and protection

• Satisfies security regulation requirements such as FIPS 140-2

Host HSM

Request
cryptographic operations

Response
(e.g., Digital signature)

Physical separation

Root keys
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Demands for Scalable Security Services
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Microservices

Edge computing

Financial technology

Innovation in 
emerging cloud 

industries

Increase of 
secure network 

transactions

User-to-Service

Service-to-Service

Demands for 
scalable security 

services

More cryptographic 
operations

Low latency 
& High throughput

Multiple user/key 
isolation



Problem: Limited Scalability of HSMs
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HSM

Multiple
services

Lots of request
Dedicated 
hardware

Signing speed: 10,000 tps (RSA-2048)
Price: $29,900

Network

Performance
bottleneck!



Problem: Limited Scalability of HSMs
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Expensive solution!

Many on-premises HSMsMultiple
services
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Network
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Price: $1,250 per month 
(IBM Cloud HSM)

Multiple
services

Lots of request

Network

Cloud HSM

Expensive solution!



Expensive solution!

Problem: Limited Scalability of HSMs
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Price: $1,250 per month 
(IBM Cloud HSM)

Multiple
services

Lots of request

Network

Cloud HSM

Can we efficiently scale out HSMs 
for key management services?
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Encrypted
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SGX CPU

System MemorySGX-equipped 
server

Alternative Approach
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• Leverages commodity Trusted Execution Environment (TEE) 
instead of HSMs
[S. Chakrabarti et al. “Intel® SGX Enabled Key Manager Service with 
OpenStack Barbican.” arXiv preprint arXiv:1712.07694, 2017.]

Malicious 
OS or Hypervisor



Limitation of the Alternative Approach
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• Leverages commodity Trusted Execution Environment (TEE) 
instead of HSMs
[S. Chakrabarti et al. “Intel® SGX Enabled Key Manager Service with 
OpenStack Barbican.” arXiv preprint arXiv:1712.07694, 2017.]

Does not provide physical separation & protection

Enclave

Encrypted
code/data

SGX CPU

System MemorySGX-equipped 
server



Approach : Combining HSMs with TEE-based KMS
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• Achieves cost-efficient scalability with SGX technology

• Maintains security level of physical separation with HSMs

• SGX enclaves and HSMs collaborate for key management

SGX-equipped 
server HSM

Physical separation

PCIe/Network communication

Multiple
SGX EnclavesSGX CPU 

instructions

Collaborative KMS



Deployment Assumption & Threat Model
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Challenge 1 : Scaling Performance
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• Frequent private key operation requests to HSMs can incur 
performance bottleneck.

Untrusted Platform

Microservices
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Root keys
(Root-of-trust)

Physical separation
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Challenge 1 : Scaling Performance
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• Frequent private key operation requests to HSMs can incur 
performance bottleneck.

Untrusted Platform

② Symmetric key 
operation requests 

Microservices
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HSM
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Root keys
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Heavy private key 
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Challenge 2 : Validation between Enclaves and HSMs
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Untrusted Platform

Request

Response

• KMS clients, SGX enclaves and HSMs should trust each others

• Lack of validation mechanism between SGX enclaves and HSMs

HSM

Multiple 
SGX Enclaves

Root keys
(Root-of-trust)

Physical separation

Microservices
(KMS clients)
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• KMS clients, SGX enclaves and HSMs should trust each others

• Lack of validation mechanism between SGX enclaves and HSMs

Trust?

Fake 
Enclave

MITM

Trust?

Invalid 
access

Untrusted Platform

Microservices
(KMS clients)

Challenge 2 : Validation between Enclaves and HSMs



Design Goals of ScaleTrust
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1. Scalable performance

Enhances performance by scaling out and does not make 
an HSM a performance bottleneck

2. Cost-effectiveness 

Cost-efficiently scales out for key management services 

3. Security 

Preserves a chain-of-trust from an HSM to clients



Design Overview
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Design Overview
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Secure bootstrapping
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Secure bootstrapping ① : 
An HSM generates 

a root key pairs
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Secure bootstrapping
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Secure bootstrapping ② : 
The HSM shares root public 

key with bootstrapping enclave
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Secure bootstrapping
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Secure bootstrapping ③ : 
The bootstrapping enclave 

attests KMS enclaves
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Secure bootstrapping
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Secure bootstrapping ④ :
The bootstrapping enclave 

shares the public key

Key 
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Secure bootstrapping
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Secure bootstrapping ⑤ : 
The KMS enclaves attest the 

HSM and build secure channels
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Secure bootstrapping
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Secure bootstrapping : 
A fake enclave cannot build a 
secure channel with the HSM
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Attestation on SGX Instances
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Attestation on enclaves ① : 
When the client first request 

to KMS server, it allocates 
KMS enclaves for the client.
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Attestation on SGX Instances
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Attestation on enclaves ② : 
After a new KMS enclave is 
created, the bootstrapping 

enclave attests it.
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Attestation on SGX Instances
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Attestation on enclaves ③ : 
Also, the client performs

remote attestation to verify
the KMS enclave.
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Attestation on SGX Instances
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Attestation on enclaves ④ : 
After the remote attestation, 

the client sends encrypted 
KMS requests to the enclave
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Attestation on SGX Instances
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Untrusted Platform
Attestation on enclaves : 

A fake enclave cannot build a 
communication channel with 

the client
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Hierarchical Design for Scaling
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Hierarchical Design for Scaling
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Hierarchical Design for Scaling
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Microservices
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JSON Web Token (JWT) for Microservice
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JWT client

JWT auth server

A

R : Refresh token
(Lifetime: few hours)

: Access token
(Lifetime: more than a week)
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Refresh token request
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R : Refresh token
(Lifetime: few hours)
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(Lifetime: more than a week)

JWT auth server
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JWT client
Refresh token request

A

R : Refresh token
(Lifetime: few hours)

: Access token
(Lifetime: more than a week)

JWT auth server

Creates and signs the refresh token

Refresh token 
key pair

R



JSON Web Token (JWT) for Microservice
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JWT client
Access token request

JWT auth server

A

R : Refresh token
(Lifetime: few hours)

: Access token
(Lifetime: more than a week)

Verifies the refresh token 
and sends a new access token

R

A

R

Refresh token 
key pair

R
Web server

A



Application Case Study : JWT Management
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Application Case Study : JWT Management
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JWT client

Physical separation

KMS 
Enclaves

Refresh token 
key pair

HSM

JWT auth server

Validate the 
refresh token

Access token request

A

A

R : Refresh token
(Lifetime: few hours)

: Access token
(Lifetime: more than a week)



Application Case Study : JWT Management
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Preliminary Evaluation
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SGX-equipped 
server

SoftHSM

• Environment setup
• CPU: Quad-core Intel Xeon E3-1280 v6 (SGX-enabled)

• Intel SGX Linux SDK version 2.5

• We use SoftHSM to emulate an HSM device.

• Each enclave and HSM performs the same SHA-256 with RSA-2048 signing

Enclave 
calls

PKCS#11 
API calls

RSA key pair

RSA key pair

KMS 
Enclaves

JWT client

Token 
requests



Preliminary Evaluation: Latency Improvement
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• Scaling out KMS enclaves for latency improvement
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Preliminary Evaluation: Cost-effective Scaling
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Approach for 
KMS

Equipment
Performance

(RSA-2048 sign)
Price tps/$

ScaleTrust
(on-premises
SGX machine)

Xeon E3-1280 v6 
CPU (Quad, 4.2 GHz)

3,600 tps $500 7.2

On-premises 
HSMs-only

Luna SA A790 HSM 10,000 tps $29,900 0.33

ScaleTrust
(in Azure cloud)

Xeon E-2176G CPU 
(Quad, 4.7 GHz)

> 3,600 tps
(estimated)

$500
per month

> 7.2
for a month

Cloud HSM 
(Azure HSM)

Luna SA A790 HSM 10,000 tps
$5000

+ $3,541
per month

1.17 
for a month

*tps = transactions per second



Future work
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• Evaluation with a real HSM device

Physical separation

HSM

Root key pair
(Root-of-trust)

KMS 
Enclaves

Untrusted Platform

PKCS#11 API calls



Future work
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• Physical separation by Intel VCA (SGX card)

Intel VCA card

SGX node1

Enclave1

SGX node2 SGX node3

Enclave1

Enclave1Host

SGX node manager

MMIO region

Enclave2

Enclave2

PCIe communication



Conclusion

53

• We explore new design space to address the limited
scalability of HSMs by combining TEE technology

• ScaleTrust preserves chain-of-trust from an HSM to clients

• ScaleTrust utilizes HSMs and SGX enclaves in a hierarchical 
model to relieve the burden of HSMs

• Our JWT case study shows that ScaleTrust can be applied to 
key management for microservices.
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