
1

Toward Scaling Hardware Security Module for
Emerging Cloud Services

Juhyeng Han*, Seongmin Kim*, Taesoo Kim † , Dongsu Han

KAIST †Georgia Tech

* The first two authors contributed equally to this work.

Hardware Security Modules (HSMs)

2

• Root of trust for various key management services (KMS)
• Their root keys should be stored in HSMs

• Secure physical separation and protection

• Satisfies security regulation requirements such as FIPS 140-2

Host HSM

Request
cryptographic operations

Response
(e.g., Digital signature)

Physical separation

Root keys

Hardware Security Modules (HSMs)

3

• Root of trust for various key management services (KMS)
• Root keys should be stored in HSMs

• Secure physical separation and protection

• Satisfies security regulation requirements such as FIPS 140-2

Host HSM

Request
cryptographic operations

Response
(e.g., Digital signature)

Physical separation

Physical separation required
(U.S. and Canadian security standard)

Tamper-evident
Tamper-resistant

FIPS
140-2

Root keys

Demands for Scalable Security Services

4

Microservices

Edge computing

Financial technology

Innovation in
emerging cloud

industries

Increase of
secure network

transactions

User-to-Service

Service-to-Service

Demands for
scalable security

services

More cryptographic
operations

Low latency
& High throughput

Multiple user/key
isolation

Problem: Limited Scalability of HSMs

5

HSM

Multiple
services

Lots of request
Dedicated
hardware

Signing speed: 10,000 tps (RSA-2048)
Price: $29,900

Network

Performance
bottleneck!

Problem: Limited Scalability of HSMs

6

Expensive solution!

Many on-premises HSMsMultiple
services

Lots of request

Network

Problem: Limited Scalability of HSMs

7

Price: $1,250 per month
(IBM Cloud HSM)

Multiple
services

Lots of request

Network

Cloud HSM

Expensive solution!

Expensive solution!

Problem: Limited Scalability of HSMs

8

Price: $1,250 per month
(IBM Cloud HSM)

Multiple
services

Lots of request

Network

Cloud HSM

Can we efficiently scale out HSMs
for key management services?

Enclave

Encrypted
code/data

SGX CPU

System MemorySGX-equipped
server

Alternative Approach

9

• Leverages commodity Trusted Execution Environment (TEE)
instead of HSMs
[S. Chakrabarti et al. “Intel® SGX Enabled Key Manager Service with
OpenStack Barbican.” arXiv preprint arXiv:1712.07694, 2017.]

Malicious
OS or Hypervisor

Limitation of the Alternative Approach

10

• Leverages commodity Trusted Execution Environment (TEE)
instead of HSMs
[S. Chakrabarti et al. “Intel® SGX Enabled Key Manager Service with
OpenStack Barbican.” arXiv preprint arXiv:1712.07694, 2017.]

Does not provide physical separation & protection

Enclave

Encrypted
code/data

SGX CPU

System MemorySGX-equipped
server

Approach : Combining HSMs with TEE-based KMS

11

• Achieves cost-efficient scalability with SGX technology

• Maintains security level of physical separation with HSMs

• SGX enclaves and HSMs collaborate for key management

SGX-equipped
server HSM

Physical separation

PCIe/Network communication

Multiple
SGX EnclavesSGX CPU

instructions

Collaborative KMS

Deployment Assumption & Threat Model

12

Root-privileged
attacker

Untrusted Platform

Microservices
(KMS clients)

HSM (Trusted)

Multiple
SGX Enclaves

(Trusted)

Root keys
(Root-of-trust)

Physical separation

KMS request

Fake
Enclave

Invalid
access

Challenge 1 : Scaling Performance

13

• Frequent private key operation requests to HSMs can incur
performance bottleneck.

Untrusted Platform

Microservices
(KMS clients)

HSM

Multiple
SGX Enclaves

Root keys
(Root-of-trust)

Physical separation

Challenge 1 : Scaling Performance

14

• Frequent private key operation requests to HSMs can incur
performance bottleneck.

Untrusted Platform

① Frequent short-living
authentication requests

Microservices
(KMS clients)

HSM

Multiple
SGX Enclaves

Root keys
(Root-of-trust)

Physical separation

Heavy private key
operations

Challenge 1 : Scaling Performance

15

• Frequent private key operation requests to HSMs can incur
performance bottleneck.

Untrusted Platform

Microservices
(KMS clients)

HSM

Multiple
SGX Enclaves

Root keys
(Root-of-trust)

Physical separation
① Frequent short-living
authentication requests

Heavy private key
operations

Performance
bottleneck

Challenge 1 : Scaling Performance

16

• Frequent private key operation requests to HSMs can incur
performance bottleneck.

Untrusted Platform

② Symmetric key
operation requests

Microservices
(KMS clients)

HSM

Multiple
SGX Enclaves

Root keys
(Root-of-trust)

Physical separation
① Frequent short-living
authentication requests

Heavy private key
operations

Challenge 2 : Validation between Enclaves and HSMs

17

Untrusted Platform

Request

Response

• KMS clients, SGX enclaves and HSMs should trust each others

• Lack of validation mechanism between SGX enclaves and HSMs

HSM

Multiple
SGX Enclaves

Root keys
(Root-of-trust)

Physical separation

Microservices
(KMS clients)

HSM

Multiple
SGX Enclaves

Root keys
(Root-of-trust)

Request

Response

Physical separation

18

• KMS clients, SGX enclaves and HSMs should trust each others

• Lack of validation mechanism between SGX enclaves and HSMs

Trust?

Fake
Enclave

MITM

Trust?

Invalid
access

Untrusted Platform

Microservices
(KMS clients)

Challenge 2 : Validation between Enclaves and HSMs

Design Goals of ScaleTrust

19

1. Scalable performance

Enhances performance by scaling out and does not make
an HSM a performance bottleneck

2. Cost-effectiveness

Cost-efficiently scales out for key management services

3. Security

Preserves a chain-of-trust from an HSM to clients

Design Overview

20

Untrusted Platform

Physical separation

HSM

Root key pair
(Root-of-trust)

Untrusted Platform

Trusted Host

Bootstrapping
Enclave

KMS
EnclavesMicroservices

(KMS clients)

Design Overview

21

Untrusted Platform

Physical separation

HSM

Root key pair
(Root-of-trust)

Untrusted Platform

Trusted Host

Bootstrapping
Enclave

KMS
EnclavesMicroservices

(KMS clients)

KMS request

Design Overview

22

Untrusted Platform

Physical separation

HSM

Root key pair
(Root-of-trust)

Untrusted Platform

Trusted Host

Bootstrapping
Enclave

Microservices
(KMS clients)

KMS
Enclaves

PKCS#11
API calls

KMS request

Design Overview

23

Untrusted PlatformUntrusted Platform

Trusted Host

Bootstrapping
Enclave

Microservices
(KMS clients)

KMS
Enclaves

KMS request

Physical separation

Root key pair
(Root-of-trust)

Derived
keys

PKCS#11
API calls

HSM

Design Overview

24

Untrusted PlatformUntrusted Platform

KMS
EnclavesMicroservices

(KMS clients)
Derived
keys

PKCS#11
API calls

Root
public key

KMS request

Physical separation

Root key pair
(Root-of-trust)

HSM

Offline
key deployment

(Trusted)

Bootstrapping
Enclave

Trusted Host

Secure bootstrapping

25

Secure bootstrapping ① :
An HSM generates

a root key pairs

Microservices
(KMS clients)

KMS
Enclaves

Untrusted Platform

Bootstrapping
Enclave

Trusted Host Physical separation

HSM

Root key pair
(Root-of-trust)

Secure bootstrapping

26

Secure bootstrapping ② :
The HSM shares root public

key with bootstrapping enclave

Microservices
(KMS clients)

Offline
key deployment

(Trusted)

KMS
Enclaves

Untrusted Platform

Bootstrapping
Enclave

Trusted Host Physical separation

HSM

Root key pair
(Root-of-trust)

Secure bootstrapping

27

Secure bootstrapping ③ :
The bootstrapping enclave

attests KMS enclaves

Remote
attestationBootstrapping

Enclave

Trusted Host

Microservices
(KMS clients)

Physical separation

HSM

Root key pair
(Root-of-trust)

KMS
Enclaves

Untrusted Platform

Secure bootstrapping

28

Secure bootstrapping ④ :
The bootstrapping enclave

shares the public key

Key
deploymentBootstrapping

Enclave

Trusted Host

Microservices
(KMS clients)

Physical separation

HSM

Root key pair
(Root-of-trust)

KMS
Enclaves

Untrusted Platform

Secure bootstrapping

29

Secure bootstrapping ⑤ :
The KMS enclaves attest the

HSM and build secure channels

Bootstrapping
Enclave

Trusted Host

Microservices
(KMS clients)

Physical separation

HSM

Root key pair
(Root-of-trust)

KMS
Enclaves

Secure
channel

Untrusted Platform

Secure bootstrapping

30

Secure bootstrapping :
A fake enclave cannot build a
secure channel with the HSM

Fake
Enclave

Bootstrapping
Enclave

Trusted Host

Microservices
(KMS clients)

Physical separation

HSM

Root key pair
(Root-of-trust)

KMS
Enclaves

Untrusted Platform

Remote
attestation

Attestation on SGX Instances

31

Attestation on enclaves ① :
When the client first request

to KMS server, it allocates
KMS enclaves for the client.

KMS request

Allocated enclaves

Bootstrapping
Enclave

Trusted Host

Microservices
(KMS clients)

Physical separation

HSM

Root key pair
(Root-of-trust)

Untrusted Platform

KMS
Enclaves

Attestation on SGX Instances

32

Attestation on enclaves ② :
After a new KMS enclave is
created, the bootstrapping

enclave attests it.

Remote
attestationBootstrapping

Enclave

Trusted Host

Microservices
(KMS clients)

Physical separation

HSM

Root key pair
(Root-of-trust)

KMS
Enclaves

Secure
channel

Untrusted Platform

Attestation on SGX Instances

33

Attestation on enclaves ③ :
Also, the client performs

remote attestation to verify
the KMS enclave.

Bootstrapping
Enclave

Trusted Host

Microservices
(KMS clients)

Physical separation

HSM

Root key pair
(Root-of-trust)

KMS
Enclaves

PKCS#11
API calls

Secure
channel

Untrusted Platform

Remote attestation

Attestation on SGX Instances

34

Attestation on enclaves ④ :
After the remote attestation,

the client sends encrypted
KMS requests to the enclave

Bootstrapping
Enclave

Trusted Host

Microservices
(KMS clients)

Untrusted Platform

Physical separation

HSM

Root key pair
(Root-of-trust)

KMS
Enclaves

PKCS#11
API calls

Secure
channel

Remote attestation

Secure channel
KMS request

Attestation on SGX Instances

35

Untrusted Platform
Attestation on enclaves :

A fake enclave cannot build a
communication channel with

the client

Fake
Enclave

Remote
attestation

Physical separation

HSM

Root key pair
(Root-of-trust)

KMS
Enclaves

PKCS#11
API calls

Bootstrapping
Enclave

Trusted Host

Microservices
(KMS clients)

KMS request

Hierarchical Design for Scaling

36

Root-of-trust

Scalable
security services

KMS
requests

Physical separation

KMS
Enclave

Root key pair
(root-of-trust)

HSM

Microservices
(KMS clients)

Hierarchical Design for Scaling

37

Root-of-trust

Scalable
security services

KMS
requests

Physical separation

KMS
Enclave

Root key pair
(root-of-trust)

HSM

Derived
keys

Microservices
(KMS clients)

Root key operation requests

Hierarchical Design for Scaling

38

Microservices
(KMS clients)

Physical separation

KMS
Enclaves

Root-of-trust

Root key operation requests

Scalable
security services

KMS
requests

Root key pair
(root-of-trust)

Frequent cryptographic requests

Derived
keys

HSM

JSON Web Token (JWT) for Microservice

39

JWT client

JWT auth server

A

R : Refresh token
(Lifetime: few hours)

: Access token
(Lifetime: more than a week)

JSON Web Token (JWT) for Microservice

40

JWT client
Refresh token request

A

R : Refresh token
(Lifetime: few hours)

: Access token
(Lifetime: more than a week)

JWT auth server

JSON Web Token (JWT) for Microservice

41

JWT client
Refresh token request

A

R : Refresh token
(Lifetime: few hours)

: Access token
(Lifetime: more than a week)

JWT auth server

Creates and signs the refresh token

Refresh token
key pair

R

JSON Web Token (JWT) for Microservice

42

JWT client
Access token request

JWT auth server

A

R : Refresh token
(Lifetime: few hours)

: Access token
(Lifetime: more than a week)

Verifies the refresh token
and sends a new access token

R

A

R

Refresh token
key pair

R
Web server

A

Application Case Study : JWT Management

43

JWT client

Physical separation

KMS
Enclaves

Refresh token
key pair

HSM

JWT auth server
Refresh token request

A

R : Refresh token
(Lifetime: few hours)

: Access token
(Lifetime: more than a week)

Refresh token request

Application Case Study : JWT Management

44

JWT client

Physical separation

KMS
Enclaves

Refresh token
key pair

HSM

JWT auth server
Refresh token request

R

Public key of
refresh token

A

R : Refresh token
(Lifetime: few hours)

: Access token
(Lifetime: more than a week)

Refresh token request

R

Application Case Study : JWT Management

45

JWT client

Physical separation

KMS
Enclaves

Refresh token
key pair

HSM

JWT auth server

Validate the
refresh token

Access token requestR

A

R : Refresh token
(Lifetime: few hours)

: Access token
(Lifetime: more than a week)

Application Case Study : JWT Management

46

JWT client

Physical separation

KMS
Enclaves

Refresh token
key pair

HSM

JWT auth server

Validate the
refresh token

Access token request

A

A

R : Refresh token
(Lifetime: few hours)

: Access token
(Lifetime: more than a week)

Application Case Study : JWT Management

47

JWT client

Physical separation

KMS
Enclaves

Refresh token
key pair

HSM

JWT auth server
Access token request

Refresh token request

A

R : Refresh token
(Lifetime: few hours)

: Access token
(Lifetime: more than a week)

A

R

R

Preliminary Evaluation

48

SGX-equipped
server

SoftHSM

• Environment setup
• CPU: Quad-core Intel Xeon E3-1280 v6 (SGX-enabled)

• Intel SGX Linux SDK version 2.5

• We use SoftHSM to emulate an HSM device.

• Each enclave and HSM performs the same SHA-256 with RSA-2048 signing

Enclave
calls

PKCS#11
API calls

RSA key pair

RSA key pair

KMS
Enclaves

JWT client

Token
requests

Preliminary Evaluation: Latency Improvement

49

• Scaling out KMS enclaves for latency improvement

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

C
D

F

Response time (ms)

0.95

HSM

1 Enclave

2 Enclaves

4 Enclaves

Preliminary Evaluation: Cost-effective Scaling

50

Approach for
KMS

Equipment
Performance

(RSA-2048 sign)
Price tps/$

ScaleTrust
(on-premises
SGX machine)

Xeon E3-1280 v6
CPU (Quad, 4.2 GHz)

3,600 tps $500 7.2

On-premises
HSMs-only

Luna SA A790 HSM 10,000 tps $29,900 0.33

ScaleTrust
(in Azure cloud)

Xeon E-2176G CPU
(Quad, 4.7 GHz)

> 3,600 tps
(estimated)

$500
per month

> 7.2
for a month

Cloud HSM
(Azure HSM)

Luna SA A790 HSM 10,000 tps
$5000

+ $3,541
per month

1.17
for a month

*tps = transactions per second

Future work

51

• Evaluation with a real HSM device

Physical separation

HSM

Root key pair
(Root-of-trust)

KMS
Enclaves

Untrusted Platform

PKCS#11 API calls

Future work

52

• Physical separation by Intel VCA (SGX card)

Intel VCA card

SGX node1

Enclave1

SGX node2 SGX node3

Enclave1

Enclave1Host

SGX node manager

MMIO region

Enclave2

Enclave2

PCIe communication

Conclusion

53

• We explore new design space to address the limited
scalability of HSMs by combining TEE technology

• ScaleTrust preserves chain-of-trust from an HSM to clients

• ScaleTrust utilizes HSMs and SGX enclaves in a hierarchical
model to relieve the burden of HSMs

• Our JWT case study shows that ScaleTrust can be applied to
key management for microservices.

Thank You

